Clean Water Act §319(h) Nonpoint Source Grant Program # Development of the Upper Llano River Watershed Protection Plan TSSWCB Project #11-04 Quality Assurance Project Plan – Modeling Revision 0 Texas State Soil and Water Conservation Board prepared by Texas A&M AgriLife Texas Water Resources Institute and Spatial Sciences Laboratory Effective Period: March 2012 to October 2014 Questions concerning this quality assurance project plan should be directed to: Lucas Gregory, TWRI Quality Assurance Officer lfgregory@ag.tamu.edu -or- Dr. Raghavan Srinivasan, Professor and Director, Spatial Sciences Laboratory Texas A&M AgriLife 1500 Research Parkway, Suite B220 2120 TAMU College Station, TX 77843-2120 # **Section A1: Title and Approval Sheet** Modeling Quality Assurance Project Plan for *Development of the Upper Llano River Watershed Protection Plan*. | United Si | tates Environmental Protection Agency (.EPA |), Region VI | |-----------|--|--------------| | | ame: Curry Jones
tle: USEPA Chief State/Tribal Programs Section | on | | Si | gnature: | Date: | | | ame: Henry Brewer
tle: USEPA Texas Nonpoint Source Project Of | ficer (PO) | | Si | gnature: | Date: | | Texas Sta | ate Soil and Water Conservation Board (TSSV | <u>VCB)</u> | | | ame: Jana Lloyd
tle: TSSWCB Project Manager (PM) | | | Si | gnature: | Date: | | | ame: Pamela Casebolt
tle: TSSWCB Quality Assurance Officer (QAC |)) | | Si | gnature: | Date: | | Texas A& | &M AgriLife, Texas Water Resources Institute | e (TWRI) | | | ame: Kevin Wagner
tle: TWRI Project Lead | | | Si | gnature: | Date: | | | ame: Lucas Gregory
tle: TWRI QAO | | | Si | gnature: | Date: | TSSWCB QAPP 11-04-M Section A1 Revision 0 3/7/12 Page 4 of 46 | Name: | Ragnavan Srinivasan | | | |---------|--|-------|--| | Title: | Spatial Sciences Lab Director; Project Man | ager | | | | | | | | Signatu | ire: | Date: | | # **Section A2: Table of Contents** | Section | n: Title | | Page | | | | | | |----------|---|---|------|--|--|--|--|--| | A1 | Title a | nd Approval Sheet | 3 | | | | | | | A2 | | | | | | | | | | | List of | Acronyms and Abbreviations | 6 | | | | | | | A3 | Distrib | Distribution List | | | | | | | | A4 | Project | t/Task Organization | 9 | | | | | | | A5 | Proble | m Definition/Background | 11 | | | | | | | A6 | Project | t/Task Description | 13 | | | | | | | A7 | | Puality Objectives and Criteria | | | | | | | | A8 | Specia | l Training/Certifications | 19 | | | | | | | A9 | Docum | nents and Records | 20 | | | | | | | B1 | Collect | tion Process/Field Survey Design | 22 | | | | | | | B2 | | ollection Methods | | | | | | | | B3 | Data H | andling and Custody | 26 | | | | | | | B4 | Analyt | ical Methods | 27 | | | | | | | B5 | Quality | y Control | 28 | | | | | | | B6 | | nent/Equipment Testing, Inspection, and Maintenance | | | | | | | | B7 | Instrun | nent/Equipment Calibration and Frequency | 33 | | | | | | | B8 | Inspect | tion/Acceptance for Supplies and Consumables | 34 | | | | | | | B9 | Non-di | rect Measurements/Secondary Data Use | 35 | | | | | | | B10 | Data M | Ianagement | 36 | | | | | | | C1 | Assess | ments and Response Actions | 38 | | | | | | | C2 | Report | s to Management | 39 | | | | | | | D1 | Data R | eview, Verification and Validation | 40 | | | | | | | D2 | Verific | ation and Validation Methods | 41 | | | | | | | D3 | Recond | ciliation with User Requirements | 42 | | | | | | | Append | lix A | Corrective Action Report | 43 | | | | | | | Append | lix B | Field Survey Form | 44 | | | | | | | Append | lix C | SSL SOPs for Landuse/Land Cover Surveys | 45 | | | | | | | List of | Table | s | | | | | | | | Table A | A 6.1 | Project Plan Milestones | 16 | | | | | | | Table E | able B1.1 Datasets included in GIS inventory and sources of each | | | | | | | | | Table C | ble C1.1 Assessments and Repsonse Actions | | 38 | | | | | | | Table I | able D1.1 Ground Control Point Data Review, Validation, and Verification Criteria | | 40 | | | | | | | Table I | | | | | | | | | | List of | | | | | | | | | | Figure . | | Project Organization Chart | | | | | | | | Figure . | A6.1 | Watersheds targeted for LULC classification | 13 | | | | | | #### List of Acronyms and Abbreviations CAFO Confined Animal Feeding Operation CAR Corrective action report CD Compact Disc CWA Clean Water Act DEM Digital Elevation Model DOQQs Digital ortho quarter quads DQO Data quality objectives DTED Digital terrain elevation data EPA Environmental Protection Agency ESRI Environmental Systems Research Institute GDG USDA Geospatial Data Gateway GIS Geographic information system GPS Global positioning system GSD Ground sample distance LULC Land use / land cover MS4 Municipal Separate Stormwater Sewer Systems NAD North American Datum NAIP National Agriculture Imagery Program NDOP National Digital Orthophoto Program NLCD USGS national land cover data set NRCS USDA Natural Resources Conservation Service OSSF Onsite Sewage Facilities PDOP Position Dilution of Precision PM Project Manager PO Project Officer QA Quality assurance OC Quality control QAO Quality Assurance Officer QAPP Quality assurance project plan SLWA South Llano Watershed Alliance SSL Spatial Sciences Laboratory SSURGO Soil Survey Geographic Database SWOM Surface Water Quality Monitoring TCEQ Texas Commission on Environmental Quality TTU-LRFS Texas Tech University – Llano River Field Station TM Landsat Thematic Mapper TNRIS Texas Natural Resources Information System TPDES Texas Pollutant Discharge Elimination System TSSWCB Texas State Soil and Water Conservation Board TTU-WRC Texas Tech University – Water Resources Center TWRI Texas Water Resources Institute TSSWCB QAPP 11-04-M List of Acronyms and Abbreviations Revision 0 3/7/12 Page 7 of 46 | USDA | U.S. Department of Agriculture | |------|---------------------------------| | USGS | United States Geological Survey | | UTM | Universal Transverse Mercator | | WPP | Watershed Protection Plan | | WQMP | Water Quality Management Plan | | WWTF | Wastewater Treatment Facility | #### **Section A3: Distribution List** Organizations, and individuals within, which will receive copies of the approved QAPP and any subsequent revisions include: #### **United States Environmental Protection Agency, Region VI (EPA)** 6WQ-AT 1445 Ross Avenue, Suite 1200 Dallas, TX 75202-2733 Name: Curry Jones Title: USEPA Chief State/Tribal Programs Section Name: Henry Brewer Title: USEPA Texas Nonpoint Source PO #### Texas State Soil and Water Conservation Board (TSSWCB) PO Box 658 Temple, TX 76503 Name: Jana Lloyd Title: TSSWCB PM Name: Pamela Casebolt Title: TSSWCB QAO #### **Texas AgriLife Research - Texas Water Resources Institute (TWRI)** 2118 TAMU College Station, TX 77843-2118 Name: Kevin Wagner Title: Associate Director; Project Lead Name: Lucas Gregory Title: TWRI QAO #### Texas A&M AgriLife, Spatial Sciences Lab (SSL) 2120 TAMU College Station, TX 77843-2120 Name: Raghavan Srinivasan Title: Spatial Sciences Lab Director #### **Section A4: Project/Task Organization** The following is a list of individuals and organizations participating in the project with their specific roles and responsibilities: **EPA** – Provides project oversight and funding at the federal level. #### Henry Brewer, USEPA Texas Nonpoint Source PO Responsible for overall performance and direction of the project at the federal level. Ensures that the project assists in achieving the goals of the clean water act (CWA). Reviews and approves the QAPP, project progress, and deliverables. **TSSWCB** –Texas State Soil and Water Conservation Board, Temple, Texas. Provides project overview at the State level. #### Jana Lloyd, TSSWCB PM Responsible for ensuring that the project delivers data of known quality, quantity, and type on schedule to achieve project objectives. Tracks and reviews deliverables to ensure that tasks in the work plan are completed as specified. Reviews and approves QAPP and any amendments or revisions and ensures distribution of approved/revised QAPPs to TSSWCB participants. #### Pamela Casebolt, TSSWCB QAO Reviews and approves QAPP and any amendments or revisions. Responsible for verifying that the QAPP is followed by project participants. Monitors implementation of corrective actions. Coordinates or conducts audits of field and laboratory systems and procedures. Determines that the project meets the requirements for planning, quality assessment (QA), quality control (QC), and reporting under the CWA §319(h) NPS Grant Program. **TWRI** - Texas A&M AgriLife, Texas Water Resources Institute, College Station, Texas. Responsible for reporting and development of data quality objectives (DQOs) and a quality assurance project plan (QAPP). #### Kevin Wagner, Project Lead The TWRI Project Lead is responsible for ensuring that tasks and other requirements in the contract are executed on time and with the quality assurance/quality control requirements in the system as defined by the contract and in the project QAPP; assessing the quality of subcontractor/participant work; and submitting accurate and timely deliverables to the TSSWCB PM. #### Lucas Gregory, QAO Responsible for project reporting and determining that the QAPP meets the requirements for planning, quality control, and quality assessment. Conducts audits of field and laboratory systems and procedures. Responsible for maintaining the official, approved QAPP, as well as conducting Quality Assurance audits in conjunction with TSSWCB personnel. **SSL** - Texas A&M AgriLife, Spatial Sciences Lab, College Station, Texas. Responsible for developing geographic information system (GIS) inventory and classifying land use and land cover in the Upper Llano River watershed for use in watershed protection plan (WPP)
development. #### Raghavan Srinivasan, Spatial Sciences Laboratory Director; Project Manager Responsible for coordinating and supervising land use and land cover classification activities. Responsible for ensuring that personnel have adequate training and a thorough knowledge of standard operating procedures specific to the classification of land use and land cover. Responsible for oversight of all Spatial Sciences Laboratory operations and ensuring that all quality assurance/quality control requirements are met. Enforces corrective action, as required. Figure A4.1 Project Organization Chart TSSWCB QAPP 11-04-M Section A5 Revision 0 3/7/12 Page 11 of 46 #### **Section A5: Problem Definition/Background** The South Llano River is a true gem of the Texas Hill Country. Its spring-fed flows are legendary. The South Llano River is important in that during periods of low rainfall and minimal surface runoff, spring flow from the underlying aquifers is paramount in maintaining surface flows. The river and springs that feed it support several unique plant and animal communities, and provide constant critical flows downstream to the Llano and Colorado Rivers and Lake LBJ, especially during times of drought. Stream flow data collected by USGS during the summer of 2006 showed that flow of the spring-fed Llano River accounted for roughly 75% of the water flowing into the Highland Lakes, which support Austin and other downstream Colorado River users. Limited data is available on the water quality, quantity, hydrological or biotic conditions of the North Llano River. Although located in a similar geomorphological and climatological region, it differs from the South Llano River in that much of its flows are derived from surface runoff. Because of these various factors, data collection and analysis of the North and South Llano River Watershed is warranted. Due to the pristine nature and relatively constant flow of the springs, the South Llano River is currently a healthy ecosystem supporting a variety of aquatic and terrestrial ecosystems, as well as numerous recreational opportunities. It is the only major watershed containing a genetically pure population of Guadalupe Bass, the Texas State Fish. The South Llano River is recognized by the Texas Parks and Wildlife Department as an Ecologically Significant Stream having high water quality, exceptional aquatic life, high aesthetic value, and diverse benthic macroinvertebrate and fish communities (Bayer et al., 1992; Linam et al., 1999). Further, during the early to mid-1980s, the South Llano River was designated by the Texas Commission of Environmental Quality (TCEQ) as a least disturbed ecoregion reference stream for Ecoregion 30. As such, the South Llano River represents a benchmark for which other streams are assessed throughout the ecoregion for water quality standards development and use attainment decisions. The TCEO Surface Water Quality Monitoring Program (SWQM) is currently conducting a project to further develop and refine the methods and techniques to evaluate the condition of aquatic communities in streams throughout Texas based on these least disturbed streams. TCEO will be revisiting the South Llano River as part of this effort. Significant and relevant findings from this TCEQ study will be incorporated into the WPP as appropriate. According to "Land of the Living Waters: A Characterization of the South Llano River, Its Springs, and Its Watershed" prepared by the Environmental Defense Fund, the primary threat to the South Llano River is loss of spring flow. Over the past century, one third of the major spring systems of Texas have ceased flowing largely due to aquifer withdrawals. However, subtle changes due to land fragmentation, loss of riparian habitat, and encroachment of juniper species on upland habitats also have the potential to decrease the water quality and quantity of the river. Additionally, there is potential for increased biological pollution and reduction in flows should what are now isolated pockets of invasive plants continue to spread. These plants, giant reed (Arundo donax) and elephant ears (Colocasia esculenta) are emergent hydrophytes and use vast TSSWCB QAPP 11-04-M Section A5 Revision 0 3/7/12 Page 12 of 46 quantities of water relative to native riparian communities. According to the USEPA, more than one third of all the States have waters that are listed for invasive species under §303(d) of the CWA. Physical and biological disruptions of aquatic systems caused by invasive species alter water quantity and water quality. Invasive species have a variety of negative impacts on water resources affecting recreation, irrigation, municipal, and agricultural water supply. These invasive species affect the quantity and timing of runoff, erosion, sedimentation, and other natural physical processes and may affect water availability in general. Comprehensive analyses and evaluations of these processes will provide critical evaluation tools to managers and policy makers on how best to factor invasive species into water management plans. It is far less expensive to address invasive species issues proactively than reactively. To proactively address incipient invasive species issues in the Upper Llano River Watershed, guidance from EPA's Office of Wetlands, Oceans and Watersheds (OWOW) Invasive Species Action Plan to improve effectiveness at countering invasive species that adversely impact the nation's aquatic systems will be used, in particular, monitoring, education and outreach and rapid response elements. The protection and preservation of the Upper Llano River and its springs is an environmental, economic, and cultural concern. This was recognized by the local community, and in 2009 the South Llano Watershed Alliance (SLWA) was organized as a 501(c)(3) non-governmental organization. The SLWA is an organization of landowners and interested stakeholders whose mission is to preserve and enhance the South Llano River and adjoining watersheds by encouraging land and water stewardship through collaboration, education, and community participation (http://southllano.org/). This group is thought to be the only proactively formed stakeholder group in Texas organized to ensure flows and water quality are maintained for future generations. The group also provides a forum for natural resource management education, discussion, and coordination of efforts to address other identified land and water management issues that may impact the long-term viability of the resource. Working with SLWA and other local and regional stakeholders, a WPP will be developed to protect and maintain the ecological integrity of this important waterbody from threats arising from land fragmentation, noxious woody vegetation, aquatic invasive species, groundwater availability, and the potential for groundwater exports and aquifer contamination. To the extent possible, the EPA Healthy Watersheds Initiative concepts, assessments, and management approaches outlined in the technical guidance document "Identifying and Protecting Healthy Watersheds" (EPA 2011) will be used to help guide the assessment and planning process. #### **Section A6: Project/Task Description** Development of a GIS inventory and land use / land cover (LULC) analysis will be conducted to support watershed modeling and provide needed information for a thorough assessment of the Upper Llano watershed (Figure A6.1). SSL will collaborate with project partners, local agencies and stakeholders to develop a comprehensive GIS inventory of the Upper Llano River watershed. This GIS inventory will include the most recent information available on land use, elevation, soils, stream networks, reservoirs, roads, public park lands, municipalities and satellite imagery or aerial photography. Locations of SWQM stations, United States Geological Survey (USGS) gages, public access points to the waterbodies, floodwater-retarding structures, wetlands, known OSSFs, TPDES permittees (including WWTFs, CAFOs and MS4s), and subdivisions will also be included. Sites permitted for land application of sewage sludge and septage should be included. Information on TSSWCB QAPP 11-04-M Section A6 Revision 0 3/7/12 Page 14 of 46 distribution and abundance of invasive emergent and aquatic plants from the headwaters (Llano Springs, 700 Springs, South Llano River and North Llano River) to Junction, as well as the distribution, abundance, and severity of cut and eroding banks on the South and North Llano Rivers, as provided by TTU-LRFS will also be included in the GIS inventory. TSSWCB-certified WQMPs will also be documented. SSL will provide watershed maps for stakeholder meetings as needed. SSL will perform a combination of satellite based image (2006-2010) classification schemes and where needed "heads-up digitizing" of the 2006-2010 NAIP aerial photos of the watershed using ESRI's ArcGIS 9.x software. SSL will identify individual LULC classes and delineate them in shapefile or ArcGIS grid format with a minimum mapping unit of 2 ac on screen. Brush type, density, and canopy cover will also be identified and delineated. LULC classes will be comparable to the USGS National Land Cover Dataset (NLCD). SSL will verify LULC classification through field sampling and ground truthing information to an accuracy of 80% or greater. Ground control points used in the field sampling will be collected for at least ten locations per land use type using GPS units with an accuracy of 1-10 m. According to the National Land Cover Database Zone 32 Land Cover Layer (U.S. Geological Survey, 14 Dec. 2006. http://www.mrlc.gov), the land use classification scheme to be used in this delineation will include: - <u>Developed Open Space</u> Includes areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks,
golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes. - <u>Developed Low Intensity</u> Includes areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20-49% of total cover. These areas most commonly include single-family housing units. - <u>Developed Medium Intensity</u> Includes areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50-79% of the total cover. These areas most commonly include single-family housing units. - <u>Developed High Intensity</u>- Includes highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80-100% of the total cover. - Open Water Areas of open water with less than 25% cover of vegetation or soil. - <u>Barren Land</u> (Rock/Sand/Clay) Barren areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover and includes transitional areas. TSSWCB QAPP 11-04-M Section A6 Revision 0 3/7/12 Page 15 of 46 - <u>Forested Land</u> Areas dominated by trees generally greater than 5 meters tall, and greater than 50% of total vegetation cover. - Near Riparian Forested Land Areas dominated by trees generally greater than 5 meters tall, and greater than 50% of total vegetation cover. These areas are found following in near proximity (within 30-60 m) to streams, creeks and/or rivers. - <u>Mixed Forest</u> Areas dominated by trees generally greater than 5 meters tall, and greater than 20% but less than 50% of total vegetation cover. - Rangeland Areas of unmanaged shrubs, grasses, or shrub-grass mixtures - <u>Pasture/Hay</u> Areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation. - <u>Cultivated Crops</u> Areas used for the production of annual crops, such as corn, soybeans, vegetables, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled. - <u>Brush Low Density</u> Areas dominated by woody canopy cover, including ashe juniper, mesquite, live oak and other brush species and comprise less than 30% of total vegetation cover. Where possible, species level analysis will be performed. - <u>Brush Medium Density</u> Areas dominated by woody canopy cover, including ashe juniper, mesquite, live oak and other brush species and comprise 30-60% of total vegetation cover. Where possible, species level analysis will be performed. - <u>Brush High Density</u> Areas dominated by woody canopy cover, including ashe juniper, mesquite, live oak and other brush species and comprise greater than 60% of total vegetation cover. Where possible, species level analysis will be performed. The purpose of this QAPP is to clearly delineate the QA policy, management structure, and procedures, which will be used to implement the QA requirements necessary to develop a high quality GIS inventory and classify the land use / land cover in the Upper Llano River watershed. TSSWCB QAPP 11-04-M Section A6 Revision 0 3/7/12 Page 16 of 46 # **Table A6.1. Project Plan Milestones** | | · · · · · · · · · · · · · · · · · · · | | | | |------|---|----------|--------|--------| | TASK | PROJECT MILESTONES | AGENCY | START | END | | 1.1 | Provide updates for quarterly progress reports | SSL/TWRI | Nov 11 | Oct 14 | | 1.3 | Participate in coordination meetings or conference calls with | SSL/TWRI | Nov 11 | Oct 14 | | | project partners, at least quarterly | | | | | 2.1 | Develop QAPP for Task 4 LULC & GIS Inventory | SSL/TWRI | Nov 11 | Mar 12 | | 2.2 | Provide revisions and necessary amendments to the QAPP | SSL/TWRI | Mar12 | Oct 14 | | 4.1 | Develop comprehensive GIS Inventory | SSL | Mar 12 | Oct 14 | | 4.2 | Classify currently land use & land cover of watershed | SSL | Mar 12 | Oct 14 | | 4.3 | Transfer GIS Inventory & LULC to TTU-WRC for modeling and | SSL | Mar 12 | Oct 14 | | | TSSWCB for submission to EPA R6 | | | | #### Section A7: Data Quality Objectives and Criteria The objectives for this project are as follows: - 1) Develop and obtain approval for a QAPP - 2) Classify current land use / land cover for the Upper Llano River watershed for use in the EDYS model, watershed assessment, and WPP development. - 3) To develop a comprehensive GIS inventory of the watershed using credible, widely used government data (see Section B1 and Table B1.1 for specific data sets and sources used). The 2006-2010 National Agriculture Imagery Program (NAIP) aerial photos of the area will be classified using Definiens Developer 7.0 software. 2006 NAIP imagery provides four main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 5 meters of reference digital ortho quarter quads (DOQQs) from the National Digital Ortho Program (NDOP); 2 meter GSD ortho imagery rectified to within +/- 10 meters of reference DOQQs; 1 meter GSD ortho imagery rectified to within +/- 6 meters to true ground; and, 2 meter GSD ortho imagery rectified to within +/- 10 meters to true ground. The 2008 and 2010 NAIP imagery provides two main products: 1 meter ground sample distance (GSD) ortho imagery rectified to a horizontal accuracy of within +/- 5 meters of reference DOQQs from NDOP or from NAIP; 1 meter GSD ortho imagery rectified to within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 360 meter buffer on all four sides. NAIP quarter quads are rectified to the UTM coordinate system, NAD 83 and cast into a single predetermined UTM zone. As a point of comparison, NLCD is created with Landsat Thematic Mapper images. Each image is precision terrain-corrected using 3-arc-second digital terrain elevation data (DTED), and georegistered using ground control points. The resulting root mean square registration error is less than 1 pixel, or 30 meters. To achieve the needed precision and accuracy, the land use / land cover classification scheme to be used in this delineation will include at a minimum the fifteen classifications discussed in A6. Individual LULC classes will be identified and delineated with a minimum mapping unit of 2 acres on screen. Representativeness will be addressed by collecting ground control points for at least ten locations per land use type per watershed. This GPS survey will utilize the Trimble GeoExplorer 3 Global Positioning System Receiver in the WGS84 (World Geodetic System of 1984) Mode to obtain control point latitude/longitude values within 10 meters of true locations at the 95% confidence level. This level of accuracy is consistent with Tier 3 described in the EPA National Geospatial Data Policy. The Trimble GeoExplorer 3 will be set to capture data provided that at least four satellites are in view and the Position Dilution of Precision (PDOP) value remains at 6 or below. The receiver will be set to provide audible or visual warnings when the quality settings are exceeded. Sample interval and time on station will be consistent with Trimble GeoExplorer 3 Manual recommendations. Post-processing the GPS data will be accomplished using the TSSWCB QAPP 11-04-M Section A7 Revision 0 3/7/12 Page 18 of 46 vendor's software package operating on a local workstation. The higher end software package will perform statistical analyses on the point data downloaded from the GPS receiver. For 10-meter data accuracy, any data points with a standard deviation of 3 meters or more will be a basis to exclude that data point from the collection. Ideally, the standard deviation for 10-meter accuracy data should be 1 meter or less at the 95% confidence level. Once the ground control points are collected as outlined in the previous paragraph, the individual LULC classes will be verified through comparison with the ground control points to ensure an accuracy of 80% or greater. This will be complemented with aerial photographs and other ancillary data that is available (See section B). Comparability will be addressed by collecting, analyzing, and reporting the data as described in section B of this document. A completeness goal of 100% is needed for the project. Valid data is required for each land use / land cover class mapped in order to complete the cover maps for each watershed. TSSWCB QAPP 11-04-M Section A8 Revision 0 3/7/12 Page 19 of 46 #### **Section A8:** Special Training/Certification Although no special certifications are required, the team in the SSL has obtained GIS and Remote Sensing certificates through Texas A&M University. Each member has also earned a Bachelor of Science in Spatial Sciences and received a Master of Science from Texas A&M University. All personnel involved in classification of land use and land cover has the appropriate education and training required to adequately perform their duties including being trained and field tested in the typical techniques used for land use inventories, having training in the classification scheme employed in the land cover mapping process, and being trained and experienced in using Trimble GeoExplorer 3 GPS Receivers, (ESRI) ARCINFO and ARCVIEW. TSSWCB QAPP 11-04-M Section A9 Revision 0 3/7/12 Page 20 of 46 #### **Section A9: Documentation and Records** Digital files of land cover data for each watershed will be produced in shapefile or ArcGIS grid format and stored on CD-ROM disks. Multi-color hard copy maps of land cover can be produced at various geographic scales from these digital files. SSL
plans to produce hard copy land cover maps for the Upper Llano River watershed. Other products will be produced as required by the TSSWCB, cooperators and other data users. Metadata documentation will be developed and will document data sources, processing techniques, accuracy assessment, and other pertinent information. Appendix B represents the field data collection form used for this project. Other records and documentation to be developed for this project include the following: digital files of spatial data, field data, and scanned photographs. Records of field data, original aerial photos, digital files used for classifying LULC and accuracy assessment, and corrective action reports (CARs) will be maintained and archived by SSL for at least five years. All electronic data are backed up on an external hard drive monthly, compact disks weekly, and is simultaneously saved in an external network folder and the computer's hard drive. A blank CAR form is presented in Appendix A. Quarterly progress reports disseminated to the individuals listed in section A3 will note activities conducted, items or areas identified as potential problems, and any variations or supplements to the QAPP. CARs will be utilized when necessary. CARs that result in any changes or variations from the QAPP will be made known to pertinent project personnel and documented in an update or amendment to the QAPP. All quarterly progress reports and QAPP revisions will be distributed to personnel listed in Section A3. The TSSWCB may elect to take possession of records at the conclusion of the specified retention period. #### **QAPP Revision and Amendments** Until the work described is completed, this QAPP shall be revised as necessary and reissued annually on the anniversary date, or revised and reissued within 120 days of significant changes, whichever is sooner. The last approved versions of QAPPs shall remain in effect until revised versions have been fully approved; the revision must be submitted to the TSSWCB for approval before the last approved version has expired. If the entire QAPP is current, valid, and accurately reflects the project goals and the organization's policy, the annual re-issuance may be done by a certification that the plan is current. This will be accomplished by submitting a cover letter stating the status of the QAPP and a copy of new, signed approval pages for the QAPP. TSSWCB QAPP 11-04-M Section A9 Revision 0 3/7/12 Page 21 of 46 QAPP amendments may be necessary to reflect changes in project organization, tasks, schedules, objectives and methods; address deficiencies and nonconformances; improve operational efficiency; and/or accommodate unique or unanticipated circumstances. Written requests for amendments are directed from the TWRI Project Leader to the TSSWCB PM and are effective immediately upon approval by the TSSWCB PM and QAO or their designees, and the EPA PO. Amendments to the QAPP and the reasons for the changes will be documented and distributed to all individuals on the QAPP distribution list by the TWRI Project Leader or designee. Amendments shall be reviewed, approved, and incorporated into a revised QAPP during the annual revision process. TSSWCB QAPP 11-04-M Section B1 Revision 0 3/7/12 Page 22 of 46 #### **Section B1: Collection Process/Field Survey Design** The production of a land cover map is an iterative process based on data from NAIP imagery, existing maps and field reconnaissance. Land use / land cover will be assigned to fifteen categories according to the category descriptions provided in Section A6. Ground reference data must be collected to train the computer software to recognize the spectral reflectance of various land cover categories represented in the NAIP imagery. Since ground reference data generally cannot be collected for the entire project area, representative samples will be used. SSL staff will collect or acquire at least ten actual ground locations per land use type in the watershed for use in mapping land cover. These locations will be used to conduct supervised classifications of remote sensing data from NAIP imagery. This data will also be used for accuracy assessment as outlined in Section B5. Field data will be collected according to standard protocols. The SSL PM will review field data and assign appropriate classification prior to digitizing the data for GIS analysis. Descriptions of land use / land cover that cannot be assigned a class corresponding to the scheme used in labeling classes on the land cover map will be rejected. Types and numbers of samples required: SSL will acquire 10 representative ground locations for each land cover class labeled on the land cover map. Sampling Locations and frequencies: SSL has a goal of 150 field sites with a minimum of 10 sites for each land use / land cover class. Data are being acquired from the watershed to provide a representative sample (i.e., the GPS points collected represent the landscapes that are found throughout the watershed). A high quality GIS inventory will be produced by collecting the most recent information from state and federal agencies (Table B1.1). All datasets will be projected using NAD 1983 UTM Zone 14N. United States Department of Agriculture's (USDA) Geospatial Data Gateway (GDG) will be used to acquire information for the GIS inventory. A Digital Elevation Model (DEM) at 10m and 30m resolution will be collected for the watershed. Soil Survey Spatial and Tabular Data (SSURGO) shapefiles will be obtained from the GDG. Texas Natural Resource Information System (TNRIS) will be used to collect data for the GIS inventory as well. The Strategic Mapping Program (StratMap) will be used to obtain rivers, lakes, cities, parks, landmarks, and roads shapefiles. United States Geological Survey (USGS) will be used to gather weather station points in the watershed. TCEQ monitoring and permitted sites (i.e. municipal solid wastes, industrial hazardous wastes, public water supply surface intakes, public water supply wells, surface water quality monitoring sites, and wastewater outfalls) will be collected from the Texas Commission on Environmental Quality (TCEQ). Additional information needed will be collected as needed, and the QAPP will be updated. Table B1.1 Datasets included in GIS inventory and sources of each. | Data | Source | Website | |---|----------------------------------|--| | Northern and Southern Llano | USGS | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | Watershed | TOPO | 1.00.00 | | CCN_water | TCEQ | http://www.tceq.texas.gov/gis/sites.html | | Municpal solid wastes_sites | TCEQ | http://www.tceq.texas.gov/gis/sites.html | | municipalites | TNRIS | http://www.tnris.org/ | | NLCD 2001 | MRLC | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | NLCD 2006 | MRLC | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | NED 10m | USGS | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | NED 30m | USGS | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | NHD_flowline | USGS | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | NHD_waterbodies | USGS | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | permitted and industrial hazardous wastes | TCEQ | http://www.tceq.texas.gov/gis/sites.html | | Public water supply surface intake | TCEQ | http://www.tceq.texas.gov/gis/sites.html | | public water supply wells | TCEQ | http://www.tceq.texas.gov/gis/sites.html | | SSURGO | USDA NRCS | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | stratmap transportation | TCEQ | http://www.tceq.texas.gov/gis/sites.html | | stratmap boundaries | TCEQ | http://www.tceq.texas.gov/gis/sites.html | | surface water quality management sites | TCEQ | http://www.tceq.texas.gov/gis/sites.html | | wastewater outfalls | TCEQ | http://www.tceq.texas.gov/gis/sites.html | | wetlands | USGS | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | NAIP 06 | USDA-FSA-APFO
NAIP | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | NAIP 08 | USDA-FSA-APFO
NAIP | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | NAIP 10 | USDA-FSA-APFO
NAIP | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | USGS Gauges | USGS | http://waterdata.usgs.gov/tx/nwis/rt | | Texas Gazeteer | TNRIS | http://www.tnris.org/ | | CDL2008 | USDA-NASS | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | CDI 2000 | Cropland Data Layer | 1 | | CDL2009 | USDA-NASS
Cropland Data Layer | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | | CDL2010 | USDA-NASS Cropland Data Layer | http://datagateway.nrcs.usda.gov/GDGOrder.aspx | #### **Section B2: Data Collection Methods** #### Phase 1 Acquisition: Ancillary data will be used to classify the NAIP images into classes. The SSL is using existing aerial photos, topo maps and field data from the Natural Resource Conservation Service (NRCS) as sources to define LULC polygons. The geographic location of the polygons is known and is matched to the same location on the imagery. #### Phase 2 Acquisition: Field sampling will be used to verify individual LULC classes identified and delineated. Ground control points used in the field sampling will be collected for at least ten locations per land use type for the watershed using GPS units with an accuracy of 1-10 m. Road maps are created prior to field collection, and routes are designed to cover the extent of the watershed. The ground control points are collected every 5 minutes along accessible roads. Some points will be collected along trails of the South Llano River State Park as well. LULC categories are identified in the field by an observer who is knowledgeable about LULC identification and classification standards. Observed LULC classifications are recorded on data forms provided by the SSL (Appendix B). No specialized equipment is used to collect the sample data. Since the project classifies land cover, it is preferred to collect samples during a leaf-on season because this time of year
makes it easier to identify vegetation types. #### Phase 3 Acquisition: As listed in Table B1.1, GIS inventory will be produced by collaboration with project partners, local agencies, and stakeholders. The most recent information available on land use, elevation, soils, stream networks, reservoirs, roads, public park lands, municipilaties, and satellite imagery or aerial photography. Locations of SWQM stations, USGS gauges, public access points to the waterbodies, floodwater-retarding structures, wetlands, known OSSFs, TPDES permittees (including WWTFs, CAFOs and MS4s), and subdivisions will also be included. Sites permitted for land application of sewage sludge and septage should be included. Existing TSSWCB-certified WQMPs will be documented as well. The GIS inventory will also include surveys conducted by TTU-LRFS showing the distribution and abundance of invasive, emergent, and aquatic plants in the Upper Llano River Watershed. It will also include TTU-LRFS surveys of distribution, abundance, and severity of cut and eroding banks on the South and North Llano Rivers. #### **Documentation of Field Sampling Activities** TSSWCB QAPP 11-04-M Section B2 Revision 0 3/7/12 Page 25 of 46 Field sampling activities are conducted according to SSL SOPs (Appendix C) and documented on field survey forms (Appendix B). #### **Recording Data** All field and SSL personnel follow the basic rules for recording information including: (1) writing legibly in indelible, waterproof ink with no modifications, write-overs or cross-outs; (2) correcting errors with a single line followed by an initial and date; and (3) closing-out incomplete pages with an initialed and dated diagonal line. #### Deviations from Sampling Method Requirements or Sample Design, and Corrective Action Corrective action may be required when deviation from sampling method requirements or sample design as stated in this QAPP occur. It is the responsibility of the TWRI Project Lead and QAO to ensure that the actions and resolutions to the problems are documented and that records are maintained in accordance with this QAPP. In addition, these actions and resolutions will be conveyed to the TSSWCB PM both verbally and in writing in the project progress reports and by completion of a corrective action report (CAR). Corrective Action Reports (CARs) document: root cause(s); programmatic impact(s); specific corrective action(s) to address any deviations; action(s) to prevent recurrence; individual(s) responsible for each action; the timetable for completion of each action; and the means by which completion of each corrective action will be documented. CARs will be included with project progress reports. In addition, significant conditions (i.e., situations which, if uncorrected, could have a serious effect on safety or on the validity or integrity of data) will be reported to the TSSWCB immediately both verbally and in writing. TSSWCB QAPP 11-04-M Section B3 Revision 0 3/7/12 Page 26 of 46 #### **Section B3: Data Handling and Custody** Field data forms provided by SSL are hand delivered or mailed back to the SSL via business reply envelopes. All ancillary data sources are filed by watershed in the SSL. When hardcopy data is digitized or otherwise entered into the computer, backups of the digital files to removable media will be made to ensure no loss of data due to machine failure. All pertinent file backups will take place monthly on an external hard drive and to a server in Centeq Building B Room 213. TSSWCB QAPP 11-04-M Section B4 Revision 0 3/7/12 Page 27 of 46 #### **Section B4: Analytical Methods** #### Phase 1 Classification: The SSL is using NAIP images and a combination of image classification schemes to conduct the land cover inventory of the watershed. NAIP quarter quads are rectified to the UTM coordinate system, NAD 83 and cast into a single predetermined UTM zone. The spectral classes from each scene covering the watersheds are first labeled into the fifteen LULC categories using whatever ground information was available, including aerial photos, topo maps and data from the NRCS. The land use classification scheme to be used is described in Section A6. Individual LULC classes will be identified and delineated in shapefile or ArcGIS grid format with a minimum mapping unit of 2 acres on screen. Ground truth sample polygons are then divided into two randomly selected groups, one for image labeling and the other for classification accuracy testing. #### Phase 2 Classification: ESRI ArcGIS software will be used to classify images in Phase 2. Classification will be done using the geographic extents of one scene. The product of the Phase 1 classification will be used as input to the supervised classification process. One category will be selected as the focus of a classification operation. Appropriate ground samples and ancillary polygons containing LULC data, located and labeled by SSL personnel, will be matched with corresponding areas on the original NAIP images and the image polygons will be classified using on-screen interpretive techniques to an accuracy of 80% or greater. The process will be repeated for each LULC category using field samples and other ancillary data. As a point of comparison, NLCD is created with Landsat Thematic Mapper images. Each image is precision terrain-corrected using 3-arc-second DTED, and georegistered using ground control points. The resulting root mean square registration error is less than 1 pixel, or 30 meters. A detailed account of data processing techniques will be documented in metadata according to the established standards. ESRI ArcCatalog software will be used to record the metadata for this project. TSSWCB QAPP 11-04-M Section B5 Revision 0 3/7/12 Page 28 of 46 #### **Section B5: Quality Control** Assessing the accuracy of land cover mapping products is an elusive and challenging problem that calls for continuing research and development within GIS and remote sensing technology. The criteria for accuracy assessment reflect the need to balance the requirements for rigor and defensibility with practical limitations of cost and time. The assessment methods must be scientifically sound and economically feasible. Procedures for ensuring quality data are produced are described below and in the SOPs (Appendix C). The basic unit of the land cover mapping process is a polygon of 2 acres that represents a LULC class with a relatively homogenous composition. An accuracy assessment will be conducted by selecting a sample of locations (e.g., centroids of mapped polygons) from the final version of the land cover map and determining the true land cover classification at these locations. These data are frequently called the reference data set. Properly executing an accuracy assessment involves knowing the nature of the created map, identifying the field methods for obtaining the reference data, designing a sound method for selecting reference data, actually collecting the data, conducting statistical analyses, and reporting the results. This project has a goal of mapping land cover with 80% accuracy. We will attempt to measure thematic accuracy as a percentage of the land cover map classified correctly overall and by cover type with a standard error no greater than 8%. Summary of steps and standards used in Accuracy Assessment: - 1. Produce a final land cover map, classification, and description of land cover classes that will be assessed. - 2. Identify the methods for obtaining reference data. - 3. Design a sampling protocol that meets the desired statistical precision. - 4. Collect the reference data, test their reliability, and archive the database. - 5. Compare the reference data to the map, conduct analyses, and report the results. Step 1: A final version of a land cover map will be produced as described in section B4. SSL anticipates having at least 15 cover classes that can be delineated on the NAIP imagery. Knowledge of the characteristics of the map to be assessed is important in determining the sampling frame (number, size, and classification of polygons). The methodology used to collect the reference data will match the classification system of the cover map. Step 2: SSL plans to use field collected data as the primary source of reference data to assess the quality of the final cover map. Ground-truthing involves physically visiting the site in question to determine its true land cover type and will require substantial support and coordination with TTU-LRFS and the South Llano River State Park. The SSL PM and SSL personnel will develop a field sampling plan that will guarantee consistency between reference data and the needs of the assessment project and future remapping, (i. e., the method of collecting the field data will enable the land cover to be identified at the same level of detail as the land cover map). Quality Control TSSWCB QAPP 11-04-M Section B5 Revision 0 3/7/12 Page 29 of 46 will be achieved by assuring that the GPS receiver performance criteria under section A.5 above are met at all times. Statistical checks will be performed on the data during the post-processing phase and the data will be compared to known map coordinates and features using USGS topographic maps and other appropriate map sources of known quality. The design of the assessment study will be stratified by, and only by, land cover types present in the final land cover map. The protocol for selecting field sampling sites will be based on the final number of land cover classes, the number of polygons within each class, and the number of samples needed to accomplish statistical precision. With a minimum mapping unit of 2 acres, SSL anticipates that the occurrence of other unmapped cover types (inclusions) within a polygon will cause few problems in collecting field data. Nevertheless, the SSL PM will develop field protocols to ensure that each mapped cover type can be correctly identified in the field. The characteristics of land cover types
that may affect these protocols are: polygon sizes (small, medium, large), polygon shapes (linear or non-linear), and heterogeneity of the land cover (degree of patchiness and size of inclusion patches). An individual measurement will result in a decision as to whether or not the field reference point agrees with the land cover map's label of that polygon. Accuracy is the statistical reduction of many samples into a statement of percent agreement. Step 3: Sampling units are defined here as all areas within the project area geographically contiguous and of homogenous primary attribute, that is, vector polygons or contiguous raster clusters of the same primary land cover type code. Land cover maps are based on algorithmic clustering of TM pixels with the resultant categories being spectrally similar. Therefore, pixels are probably not independent of each other. Although polygon boundaries are not precise, they are believed to represent real patterns on the the ground and the polygon is the defined feature that should be assessed. Therefore, the sampling unit is defined as a mapped polygon. The sample frame is the list of all polygons that comprise the final land cover map. The sampling protocol for accuracy assessment will be designed to meet the statistical precision needed to accomplish the stated objectives for accuracy and standard error. Field sites will be selected through a stratified, two-stage probability sample. Accuracy assessment field data will be recorded on forms and returned to the SSL for analysis (see Appendix B). Probability sampling, as opposed to purposive selection of "representative" elements or haphazard selection of convenient elements, is now a standard scientific tool since it guards against selection biases and it leads to objective statistical inferences. Stratification will ensure good geographic spread of the sample across the state and will provide a representative sample of alliances. Two stages of sampling will be employed. In the first stage, large tracts of land (e.g. counties, Landsat scenes, or some other convenient unit) will be selected in a stratified sample. In the second stage, sampling points within the large tracts will be selected. The reason for sampling in TSSWCB QAPP 11-04-M Section B5 Revision 0 3/7/12 Page 30 of 46 two stages, as opposed to sampling sites directly, is that direct sampling of sites would lead to a widely-scattered sample with high logistical costs. Because cost of collecting field data could be limiting, consideration will be given to stratifying according to the relative cost or effort required to measure the sampling site. Step 4. GIS methods will be used to select sampling units from the sampling frame which consists of all the polygons in a vector map. Field survey forms and standard operating procedures will be used to collect data for classification purposes (Appendix B and C). This reference data will be collected by 2-3 well-trained field observers who have no knowledge of the primary attribute given by the land cover map for the sampling unit. This will involve providing each observer with coordinates and a map showing the polygon to be sampled but without the associated land cover type label. As described previously, road maps are created prior to field collection, and routes are designed to cover the extent of the watershed. The ground control points are collected every 5 minutes along accessible roads. Some points are collected along trails of the South Llano River State Park. The field maps will typically have base information such as roads, streams, and locational grids such as UTM coordinates. Observers will be trained and field tested in the typical techniques used for land use inventories. They will also be given training in the classification scheme employed in the land cover mapping process. They will be provided written guidelines and other materials to assure that consistent, repeatable results are obtained (Appendix B and C). The field data for each sampling unit will be assigned a pointer that identifies its location on the land cover map. Reference data will be compiled as a GIS coverage containing both the locations of samples and their attributes. Metadata will include a description of the method used by the analyst to determine agreement between the map and reference data and a measure of observer reliability in order to replicate the published analysis. Field forms will be archived and GIS data managed in accordance with procedures outlined in this document. Step 5. Measurements from field sampling units will be compared with labeled polygons on the land cover map. As a first step in statistical analysis, agreements, or lack thereof, will be tabulated in a matrix whose rows represent mapped categories and columns represent observed cover types. The resulting error matrix is a contingency table which represents the probabilities of every possible correct or incorrect classification. Statistical analyses of the measurements from the assessment sample need to recognize that the data arise from a complex sample. It is not valid to analyze these data as if they are independent and identically distributed. Analyzing data from a stratified two-stage sample as if they were independent and identically distributed will typically lead to confidence intervals which are unrealistically narrow and hypothesis tests which reject too easily. That is, the precision of the TSSWCB QAPP 11-04-M Section B5 Revision 0 3/7/12 Page 31 of 46 analysis is overstated. Proper methods for dealing with data from stratified two-stage samples will be employed in this study. Limitations and Constraints: In planning accuracy assessments, three general constraints (technology, logistics, and cost) must be considered because of the limitations they place on our ability to obtain ideal data sets. Technological constraints: This category of constraints includes measurement errors relating to aquiring field observations. Error in determining the true location of the sampling unit in the field should not be a major problem in Texas because the terrain is moderate and bisected by an elaborate system of roads and highways. Sampling units will be outlined in advance on topographic maps, county road maps, and aerial photos (if available) and provided to field observers. Also, field observers will usually be able to survey entire sampling units, thereby reducing error caused by inadequate integration of all attributes of a unit. Logistical constraints: Most sampling units will be located in close proximity of a road and can be visited without great expense. Few locations will be inaccessible due to dangerous terrain. If sampling measurements cannot be made at a site due to inaccessibility, then these sites will be dropped from the sampling scheme and replaced with more accessible ones. Financial constraints: We will conduct an accuracy assessment that is a reasonable balance between available funding and scientific soundness. The GIS inventory data will be collected from state and federal agencies that use their own quality control protocol. These agencies provide metadata for all the data collected. Besides the LULC being created, all data is collected from a public domain from federal and state sources. #### **Failures in Quality Control and Corrective Action** All incidents requiring corrective action will be documented through use of CARs (Appendix A). Corrective action will involve identification of the possible cause (where possible) of the QC failure. Any QC failure that has potential to compromise data validity will invalidate the data. The resolution of QC failures will be reported to the TSSWCB in the quarterly progress report. CARs will be maintained by the Project Leader and the TSSWCB PM. TSSWCB QAPP 11-04-M Section B6 Revision 0 3/7/12 Page 32 of 46 #### Section B6: Instrument/Equipment Testing, Inspection, and Maintenance Equipment testing will be accomplished by the GPS Operator prior to, during and after field use. Built-in equipment diagnostics and functionality checks will be utilized in accordance with the operation manuals. Results will be reported in pre-survey, field and post-processing logs. Relevant procedures for digitizing equipment and other equipment used in this project can be found in Appendix C. Issues will be documented with the SSL PM. TSSWCB QAPP 11-04-M Section B7 Revision 0 3/7/12 Page 33 of 46 ### **Section B7:** Instrument/Equipment Calibration and Frequency GPS receivers cannot be calibrated. However, a number of settings can be changed (maximum PDOP, signal-to-noise ratio, filter coefficient, etc.) which will affect operation of the unit. In general, manufacturer default settings will be employed for optimum data accuracy. TSSWCB QAPP 11-04-M Section B8 Revision 0 3/7/12 Page 34 of 46 #### **Section B8: Inspection/Acceptance for Supplies and Consumables** The primary consumables for GPS operations are batteries. During the equipment testing, inspection and maintenance periods, batteries will be examined by the GPS Operator for functionality, charge and compatibility with manufacturer's specifications. Fully charged, backup batteries will be taken to the field for use when recharging is not an option. Supplies used in the SSL will be inspected upon receipt by the SSL PM for visible signs of damage. All data will be backed up on removable storage media so that failure of primary storage media will not result in data loss. Supplies will be purchased from reputable vendors to ensure quality. TSSWCB QAPP 11-04-M Section B9 Revision 0 3/7/12 Page 35 of 46 #### **Section B9:** Non-direct Measurements/Secondary Data Use This GIS inventory will include the most recent information available on land use, elevation, soils, stream networks, reservoirs, roads, public park lands, municipalities and satellite imagery or aerial photography. Locations of SWQM stations, USGS gauges, public access points to the waterbodies,
floodwater-retarding structures, wetlands, known OSSFs, TPDES permittees (including WWTFs, CAFOs and MS4s), and subdivisions will also be included. Sites permitted for land application of sewage sludge and septage will be included. Information on distribution and abundance of invasive emergent and aquatic plants from the headwaters (Llano Springs, 700 Springs, South Llano River and North Llano River) to Junction and the distribution, abundance, and severity of cut and eroding banks on the South and North Llano Rivers as provided by TTU-LRFS will also be included in the GIS inventory. TSSWCB-certified WQMPs will also be documented. The primary datasets and data sources used are listed in Table B1.1. The display of GPS ground points will be accomplished by overlaying the collected points on map features of comparable quality. This provides a road network, topographic features and other map elements that can place the collected points in the context of real-world features. This is an additional quality check, since large deviations from expected locations would cause the data and processing methods to be rechecked. Standard map products of known quality will be used. NAIP imagery from 2006-2010 will be the primary data source for constructing base maps of LULC. Ancillary information will be drawn from other imagery where applicable. 2006-2010 NAIP aerial photos of the area will be classified using Definiens Developer 7.0 software. 2006 NAIP imagery provides four main products: 1 meter GSD ortho imagery rectified to a horizontal accuracy of within +/- 5 meters of reference DOQQs from the NDOP; 2 meter GSD ortho imagery rectified to within +/- 10 meters of reference DOQQs; 1 meter GSD ortho imagery rectified to within +/- 6 meters to true ground; and, 2 meter GSD ortho imagery rectified to within +/- 10 meters to true ground. 2008 and 2010 NAIP imagery provides two main products: 1 meter GSD ortho imagery rectified to a horizontal accuracy of within +/- 5 meters of reference DOQQs from the NDOP or from the NAIP; 1 meter GSD ortho imagery rectified to within +/- 6 meters to true ground. The tiling format of NAIP imagery is based on a 3.75' x 3.75' quarter quadrangle with a 360 meter buffer on all four sides. NAIP quarter quads are rectified to the UTM coordinate system, NAD 83 and cast into a single predetermined UTM zone. TSSWCB QAPP 11-04-M Section B10 Revision 0 3/7/12 Page 36 of 46 #### **Section B10: Data Management** #### Field Collection Field staff will visit each watershed to collect ground control points for at least ten locations per land use type using Trimble GeoExplorer 3 GPS Receivers with an accuracy of 10 m. Field data will be recorded on field survey forms (Appendix B). All field observations will be manually entered into an electronic spreadsheet. The electronic spreadsheet will be created in Microsoft Excel software on an IBM-compatible microcomputer with a Windows XP Operating System. The project spreadsheet will be maintained on the computer's hard drive, which is also simultaneously saved in a network folder. All pertinent data files will be backed up monthly on an external hard drive. Current data files will be backed up on r/w CD's weekly and stored in separate area away from the computer. Original data recorded on paper files will be stored for at least five years. Electronic data files will be archived to CD after approximately one year, and then stored with the paper files for the remaining 4 years. #### Spatial Sciences Laboratory Data NAIP imagery is downloaded and copied to the hard drive of a work station. Field survey forms with field information arrive via hand-delivery or the US mail and are stored in raw form in the lab. Data from the forms are digitized and stored on the hard drive of a computer in the lab as described in Appendix C. Backup copies of all digital data are made to removable media. All field survey forms are checked prior to digitizing for accuracy and then after digitizing to assure correspondence to the original form. All necessary data from ancillary sources are digitized or copied to the hard drive of a computer in the SSL and then backup copies are made of the digital data. Where ancillary data have been digitized, the SSL PM checks that the original data correspond correctly to the digitized data. A combination of IBM compatible microcomputers with a Windows XP Operating System and workstations using the UNIX operating system will be used to process the data. An effort was made to purchase machines with the most memory, largest hard drives and fastest processing speeds that were available at the time. Additional hard drive space and random access memory will be purchased as project needs require. A suite of software will be used to process the data. All software packages are industry standard and represent the best application available for each processing function. All GIS and LULC data will be backed up on r/w CD's weekly and stored in separate area away from the computer. Backups are stored on a server in Centeq Building B Room 213 and an external hardrive. The files are easy to retrieve for people with authorization to the files. TSSWCB QAPP 11-04-M Section B10 Revision 0 3/7/12 Page 37 of 46 At least 10% of all data manually entered in the database will be reviewed for accuracy by the SSL PM to ensure that there are no transcription errors. Hard copies of data will be printed and housed in the Spatial Sciences Laboratory for a period of five years. #### Data Validation Following LULC classification and delineation, LULC data will be validated and verified with field sampling ground control points to an accuracy of 80% or greater. Any LULC that does not meet this will be re-classified until an accuracy of 80% is achieved. No LULC that does not achieve 80% accuracy will be submitted to the TSSWCB. #### Metadata Preparation Metadata preparation will be accomplished by the GPS Operator upon conclusion of the data processing phase using the EPA, *Geospatial Metadata Technical Specification v. 1.0*, November 2007. #### **Data Dissemination** As classification of each watershed is completed, the TWRI Project Lead will provide a copy of the shapefile or ArcGIS grid format of the LULC via recordable CD media to the TSSWCB PM. #### **Section C1: Assessments and Response Actions** The following table presents types of assessments and response actions for data collection activities applicable to the QAPP. **Table C1.1** Assessments and Response Actions | Assessment
Activity | Approximate Schedule | Responsible Party(ies) | Sco | ppe | Response
Requirements | |--|----------------------|------------------------|------------------------|--|--| | Status
Monitoring
Oversight | Continuous | SSL, TWRI | 2. | Monitor project status & records to ensure requirements are being fulfilled. Monitor and review performance & data quality. | Report to TSSWCB
Project Manager in
Quarterly Report | | Equipment
Testing | As needed | GPS
Operator | 1. | Pass / Fail Equipment Testing | Repair or Replace | | Data
Completeness | As needed | SSL PM | 1. | Assess Stations Sampled vs. Planned Sampling | Revisit Site or Amend
Project Objectives | | Data Quality
Objectives | As needed | GPS
Operator | 1. | Evaluate if Data Meets / Does Not Meet DQO | Exclude Questionable Data Points | | Performance
Criteria | As needed | GPS
Operator | 1. | Evaluate if Data Met / Did Not Meet
Performance Criteria | Exclude Questionable Data Points | | Statistical
Quality
Checks | As needed | GPS
Operator | 1. | Evaluate if Data Met / Did Not Meet Standard Deviation | Exclude Questionable
Data Points | | Map Overlay
Against
Known
Locations | As needed | GPS
Operator | 1. | Assess if Data Points are Good / Poor Fit Against Known Locations | Recheck Acquisition
and Processing Steps | | Technical
Systems
Audit | As needed | TSSWCB
QAO | 1.
2. | Assess compliance with the QAPP. Review facility & data management as they relate to the project. | 30 days to respond in
writing to TSSWCB
QAO to address
corrective actions | The SSL PM will conduct in-house audits of data quality and staff performance to assure that work is being performed according to standards. Audits will be documented in a written laboratory journal and initialed by the SSL PM. If audits show that the work is not being performed according to standards, immediate corrective action will be implemented and documented in the laboratory journal. The TSSWCB QAO (or designee) may conduct an audit of the field or technical systems activities for this project as needed. The SSL PM will have the responsibility for initiating and implementing response actions associated with findings identified during the on-site audit. Once the response actions have been implemented, the TSSWCB QAO (or designee) may perform a follow-up audit to verify and document that the response actions were implemented effectively. Records of audit findings and corrective actions are maintained by the TSSWCB PM and TWRI QAO. Corrective action documentation will be submitted to the TSSWCB PM with the progress report. If audit findings and corrective actions cannot be resolved, then the authority and responsibility for terminating work is specified in agreements or contracts between participating organizations. TSSWCB QAPP 11-04-M Section C2 Revision 0 3/7/12 Page 39 of 46 #### **Section C2:** Reports to Management Quarterly progress reports will be generated by TWRI personnel and will note activities conducted in connection with the LULC classification, items or areas identified as potential problems, and any variation or supplement to
the QAPP. Preliminary versions of land cover maps will be made available for inspection by the TSSWCB PM as they become available. Other maps of the watershed will be produced as needed. Once the LULC map for a watershed is complete, the SSL PM will submit the GIS land cover map, metadata, and a report of accuracy assessment activities as outlined in section B to the TSSWCB. CAR forms will be utilized when necessary (Appendix A) and will be maintained in an accessible location for reference at TWRI. The CARs that result in changes or variations from the QAPP will be made known to pertinent project personnel, documented in an update or amendment to the QAPP and distributed to personnel listed in Section A3. Following any audit performed, a report of findings, recommendations and responses are sent to the TSSWCB PM in the quarterly progress report. #### Section D1: Data Review, Verification and Validation In summary, this project will use 2006-2010 NAIP imagery to conduct a general land cover inventory for each watershed. Ancillary data consisting of field surveys, available photography and existing vegetation maps will be used to classify vegetation and label distinct spectrally clustered polygons on the imagery. LULC classification will follow the methods and quality control standards outlined in this QAPP (Section A7). The project has a goal of achieving 80 percent accuracy in the overall classification of LULC. The coverage will include the Upper Llano River watershed in Texas with a minimum mapping unit of two acres. An independent set of ground reconnaissance data will be obtained to conduct the accuracy assessment analysis. Ground reconnaissance data will be reviewed and validated as outlined in Table D1.1. Table D1.1. Ground Control Point Data Review, Validation, and Verification Criteria | Data Element | Reviewed By | Validation Criteria | |-----------------|--------------|--| | Coordinate Data | SSL PM | Consistent with Sampling Process Design | | Coordinate Data | GPS Operator | GPS Mode Matches Field Log & GPS Internal Data | | Coordinate Data | GPS Operator | Default Settings Match GPS Internal Data | | Coordinate Data | GPS Operator | Standard Deviation below 3 Meters for Acceptance | | Coordinate Data | GPS Operator | Good Fit when Data Plotted against Known Locations | | Coordinate Data | GPS Operator | Meets National Map Accuracy Standards | | Metadata | SSL PM | Meets EPA Guidelines for Metadata Documentation | Because of inherent technological, logistical, and financial constraints (Section B6), it is possible that the accuracy goal may not be achieved for all LULC classes. However, accuracy assessment will be essential for validating the final LULC map and providing the user with a measure of reliability. Only those data that are supported by appropriate quality control will be considered acceptable for use. The procedures for verification and validation are described in Section D2, below. The SSL PM is responsible for ensuring that data are properly reviewed, verified, and submitted in the required format for the project. Finally, the TWRI QAO is responsible for validating that all data collected meet the data quality objectives of the project and are suitable for reporting. #### **Section D2: Verification and Validation Methods** All field and laboratory data will be reviewed, verified and validated to ensure they conform to project specifications and meet the conditions of end use as described in Section A7. The SSL PM is responsible for the integrity, validation and verification of the data each task generates or handles throughout each process. The field and laboratory tasks ensure the verification of all raw data and electronically generated data. The field data will be verified and validated as described in Table D2.1. Table D2.1. Field Data Verification and Validation Methods | Data Element | Validation Method | |-----------------|--| | Coordinate Data | Compare Sampling Process vs. Field Log and Internal GPS Log | | Coordinate Data | Compare GPS Planned Mode vs. Field Log and Internal GPS Log | | Coordinate Data | Compare Manufacturer Default Settings vs. Internal GPS Log | | Coordinate Data | 95% of Coordinate Points fall within National Map Accuracy Standards when overlaid on known quality map features of similar accuracy | Verification, validation and integrity review of LULC data will be performed using self-assessments and peer review by project partners, as appropriate to the project task, followed by technical review by the SSL PM. The LULC data generated are evaluated against ground control points and project specifications and are checked for errors. Potential outliers are identified by examination for unreasonable data. If a question arises or an error or potential outlier is identified, then issues will be resolved through mutual consultation between the SSL PM, TWRI QAO, and TSSWCB PM. Issues which can be corrected are corrected and documented electronically or by initialing and dating the associated paperwork. If an issue cannot be corrected, the SSL PM consults with the TWRI Project Lead to establish the appropriate course of action. The final versions of the land cover maps and the accuracy assessment report will be peer reviewed by project partners prior to its release to the TSSWCB and the public. Prior to release, the SSL PM has responsibility for reviewing all data and verifying that final products achieved QAPP-defined goals for accuracy, completeness and acceptance criteria. The final version of each land cover map will be conveyed to users as digital GIS files in ARC/INFO format on CD-ROM disks. Hard copy maps will also be provided free to the TSSWCB as needed. The final element of the validation process is consideration of any findings identified during assessments or audits conducted by the TWRI or TSSWCB QAO. Any issues requiring corrective action must be addressed, and the potential impact of these issues on previously collected data will be assessed. Finally, the SSL PM in coordination with the TWRI QAO validates that the data meet the data quality objectives of the project and are suitable for reporting to the TSSWCB. TSSWCB QAPP 11-04-M Section D3 Revision 0 3/7/12 Page 42 of 46 #### **Section D3: Reconciliation with User Requirements** The GPS Reconnaissance Survey results and products will be evaluated against the Data Quality Objectives established and user requirements to determine if any reconciliation is needed. Reconciliation concerning the quality, quantity or usability of the data will be reconciled with the user during the data acceptance process. Types of reconciliation may include reduction in the scope of the project in terms quality or quantity of data produced in meeting partial user requirements. Once the final version of each Land Use / Land Cover Map is produced, the TSSWCB PM will review the product and the accuracy assessment report to determine if they fall within the acceptance limits as defined in this QAPP. Completeness will also be evaluated to determine if the completeness goal for this project has been met. If data quality indicators do not meet the project's requirements as outlined in this QAPP the data may be returned for revisions. These data, and data collected by other organizations, will subsequently be analyzed and used for watershed assessment, watershed plan development, and EDYS modeling activities. Thus, data that does not meet requirements will not be submitted to the TSSWCB nor will be considered appropriate for any of the uses noted above. TSSWCB QAPP 11-04-M Appendix A Revision 0 3/7/12 Page 43 of 46 # Corrective Action Report SOP-QA-001 CAR #: | Date: | Area/ | Location: | | | |-------------------------------------|----------------|------------------------------|--|--| | Reported by: | | | | | | State the nature of the problem, no | nconformance o | or out-of-control situation: | | | | | | | | | | Possible causes: | CAR routed to:Received by: | | | | | | Corrective Actions taken: | | | | | | | | | | | | Has problem been corrected?: | YES | NO | | | | Immediate Supervisor: | | | | | | Project Manager: | | | | | | TWRI Quality Assurance Officer: | | | | | | TSSWCB Quality Assurance Office | cer: | | | | TSSWCB QAPP 11-04-M Appendix B Revision 0 3/7/12 Page 44 of 46 ## FIELD SURVEY FORM | Date: | | |---|--| | Name: | | | Agency: | | | Watershed: | | | Site Name: | | | Point No.: | | | UTM Coordinates: | | | OR | | | Latitude/Longitude: | | | Land Use / Land Cover: Use description in | Section A5 to determine LULC for this point: | | Developed Open Space | Mixed Forest | | Developed Low Intensity | Rangeland | | Developed Medium Intensity | Pasture/Hay | | Developed High Intensity | Cultivated Crops | | Open Water | Brush Low Density | | Barren Land | Brush Medium Density | | Forested Land | Brush High Density | | Near Riparian Forested Land | | | How confident are you of your assessment? | | | High confidence Medium confide | ence Low confidence | | Comments: | | TSSWCB QAPP 11-04-M Appendix C Revision 0 3/7/12 Page 45 of 46 # Spatial Sciences Laboratory Standard Operating Procedures for Landuse/Land Cover Surveys #### **SOP** for Field Collection The field staff will prepare for the field by ensuring the equipment is functioning properly. A road map containing all major and minor roads within the watershed will be created using ArcGIS 9.3. Field operators will create routes that will cover the extent of the watershed. These routes are tentative and can be altered during field work based on the field staff's judgment. Permission to enter private property or roads should be obtained prior to field work. SSL
will develop a field sampling plan that will guarantee consistency between reference data and the needs of the assessment project and future remapping, (i. e., the method of collecting the field data will enable the land cover to be identified at the same level of detail as the land cover map). Ground-truthing involves physically visiting the site in question to determine its true land cover type and will require substantial cooperator support and coordination Field staff will visit each watershed to collect ground control points for at least ten locations per land use type using Trimble GeoExplorer 3 GPS Receivers with an accuracy of 10 m. Field data will be recorded on field survey forms (Appendix B). All field observations will be manually entered into an electronic spreadsheet. The electronic spreadsheet will be created in Microsoft Excel software on an IBM-compatible microcomputer with a Windows XP Operating System. The project spreadsheet will be maintained on the computer's hard drive, which is also simultaneously saved in a network folder. All pertinent data files will be backed up monthly on an external hard drive. Current data files will be backed up on r/w CD's weekly and stored in separate area away from the computer. Original data recorded on paper files will be stored for at least five years. Electronic data files will be archived to CD after approximately one year, and then stored with the paper files for the remaining 4 years. SSL plans to use field collected data as the primary source of reference data to assess the quality of the final cover map. Quality Control will be achieved by assuring that the GPS receiver performance criteria under section A.5 above are met at all times. Statistical checks will be performed on the data during the post-processing phase and the data will be compared to known map coordinates and features using USGS topographic maps and other appropriate map sources of known quality. #### **Equipment Calibration, Operation, and Maintenance SOP** Equipment testing will be accomplished by the GPS Operator prior to, during and after field use. The primary consumables for GPS operations are batteries. During the equipment testing, TSSWCB QAPP 11-04-M Appendix C Revision 0 3/7/12 Page 46 of 46 inspection and maintenance periods, batteries will be examined by the GPS Operator for functionality, charge and compatibility with manufacturer's specifications. Fully charged, backup batteries will be taken to the field for use when recharging is not an option. Supplies used in the SSL will be inspected upon receipt by the SSL PM for visible signs of damage. All data will be backed up on removable storage media so that failure of primary storage media will not result in data loss. Supplies will be purchased from reputable vendors to ensure quality. Built-in equipment diagnostics and functionality checks will be utilized in accordance with the operation manuals. Results will be reported in pre-survey, field and post-processing logs. Issues will be documented with the SSL PM. GPS receivers cannot be calibrated. However, a number of settings can be changed (maximum PDOP, signal-to-noise ratio, filter coefficient, etc.) which will affect operation of the unit. In general, manufacturer default settings will be employed for optimum data accuracy. #### **Digitizing SOP** All data from the forms will be manually entered into an electronic spreadsheet. The electronic spreadsheet will be created in Microsoft Excel software on an IBM-compatible microcomputer with a Windows XP Operating System. The spreadsheet will be used to digitize the sample points and create an attribute table in ArcGIS 9.3. The project spreadsheet will be maintained on the computer's hard drive, which is also simultaneously saved in a network folder. All pertinent data files will be backed up monthly on an external hard drive. #### **Field Survey SOP** All correct information should be written in the blanks. The Point No.: should always correspond with the GPS point number. The UTM Coordinates or the Latitude/Longitude can be documented. Mark the blank next to the Land Use/Land Cover type that the point represents and then mark the blank next to the amount of confidence the operator has on the representation of the point. Any comment of the point should be written if the operator feels it will help remove any confusion when processing the data.